
U N I T 2

DATABASE
MANAGEMENT SYSTEM

KEYS

• Candidate Key - The candidate keys in a table are defined as the set of
keys that is minimal and can uniquely identify any data row in the table.

• Primary Key - The primary key is selected from one of the candidate keys
and becomes the identifying key of a table. It can uniquely identify any
data row of the table.

• Super Key - Super Key is the superset of primary key. The super key
contains a set of attributes, including the primary key, which can uniquely
identify any data row in the table.

• Composite Key - If any single attribute of a table is not capable of being
the key i.e it cannot identify a row uniquely, then we combine two or more
attributes to form a key. This is known as a composite key.

• Secondary Key - Only one of the candidate keys is selected as the primary
key. The rest of them are known as secondary keys.

• Foreign Key - A foreign key is an attribute value in a table that acts as the
primary key in another another. Hence, the foreign key is useful in linking
together two tables. Data should be entered in the foreign key column
with great care, as wrongly entered data can invalidate the relationship
between the two tables.

Compiled by Ms. Prajakta Joshi

NORMALIZATION

• If a database design is not perfect, it may contain anomalies,
which are like a bad dream for any database administrator.
Managing a database with anomalies is next to impossible.

• Update anomalies − If data items are scattered and are not
linked to each other properly, then it could lead to strange
situations. For example, when we try to update one data item
having its copies scattered over several places, a few
instances get updated properly while a few others are left with
old values. Such instances leave the database in an
inconsistent state.

• Deletion anomalies − We tried to delete a record, but parts of
it was left undeleted because of unawareness, the data is also
saved somewhere else.

• Insert anomalies − We tried to insert data in a record that does
not exist at all.

Compiled by Ms. Prajakta Joshi

FIRST NORMAL FORM

• First Normal Form is defined in the definition of

relations (tables) itself. This rule defines that all the

attributes in a relation must have atomic domains.

The values in an atomic domain are indivisible units.

Compiled by Ms. Prajakta Joshi

SECOND NORMAL FORM

• Before we learn about the second normal form, we
need to understand the following −

• Prime attribute − An attribute, which is a part of the
candidate-key, is known as a prime attribute.

• Non-prime attribute − An attribute, which is not a
part of the prime-key, is said to be a non-prime
attribute.

• If we follow second normal form, then every non-
prime attribute should be fully functionally
dependent on prime key attribute. That is, if X → A
holds, then there should not be any proper subset Y
of X, for which Y → A also holds true.

Compiled by Ms. Prajakta Joshi

We see here in Student_Project relation that the prime key attributes

are Stu_ID and Proj_ID. According to the rule, non-key attributes, i.e.

Stu_Name and Proj_Name must be dependent upon both and not

on any of the prime key attribute individually. But we find that

Stu_Name can be identified by Stu_ID and Proj_Name can be

identified by Proj_ID independently. This is called partial

dependency, which is not allowed in Second Normal Form.

So there exists no partial dependency.
Compiled by Ms. Prajakta Joshi

THIRD NORMAL FORM

• For a relation to be in Third Normal Form, it must be

in Second Normal form and the following must

satisfy −

• No non-prime attribute is transitively dependent on

prime key attribute.

• For any non-trivial functional dependency, X → A,

then either −

• X is a superkey or,

• A is prime attribute.

Compiled by Ms. Prajakta Joshi

We find that in the above Student_detail relation, Stu_ID is the

key and only prime key attribute. We find that City can be

identified by Stu_ID as well as Zip itself. Neither Zip is a superkey

nor is City a prime attribute. Additionally, Stu_ID → Zip → City, so

there exists transitive dependency.
To bring this relation into third normal form, we break the

relation into two relations as follows −

Compiled by Ms. Prajakta Joshi

BOYCE-CODD NORMAL FORM

• Boyce-Codd Normal Form (BCNF) is an extension of
Third Normal Form on strict terms. BCNF states that −

• For any non-trivial functional dependency, X → A, X
must be a super-key.

• In the above image, Stu_ID is the super-key in the
relation Student_Detail and Zip is the super-key in
the relation ZipCodes. So,

• Stu_ID → Stu_Name, Zip

• and

• Zip → City

• Which confirms that both the relations are in BCNF.

Compiled by Ms. Prajakta Joshi

Normal Form Description

1NF A relation is in 1NF if it contains an atomic value.

2NF A relation will be in 2NF if it is in 1NF and all non-key attributes are fully
functional dependent on the primary key.

3NF A relation will be in 3NF if it is in 2NF and no transition dependency exists.

4NF/BCNF A relation will be in 4NF if it is in Boyce Codd normal form and has no multi-
valued dependency.

5NF A relation is in 5NF if it is in 4NF and not contains any join dependency and
joining should be lossless.

Compiled by Ms. Prajakta Joshi

https://www.javatpoint.com/dbms-first-normal-form
https://www.javatpoint.com/dbms-second-normal-form
https://www.javatpoint.com/dbms-third-normal-form
https://www.javatpoint.com/dbms-forth-normal-form
https://www.javatpoint.com/dbms-fifth-normal-form

COLUMN ATTRIBUTE

UNSIGNED

• Unsigned allows us to enter positive value; you cannot give
any negative number

NOT NULL

• Means column can not be empty

DEFAULT

• It is used to give a column a fixed value.

AUTO_INCREMENT

Auto-increment allows a unique number to be generated
automatically when a new record is inserted into a table.

• Often this is the primary key field that we would like to be
created automatically every time a new record is inserted.

Compiled by Ms. Prajakta Joshi

ALTER

alter table fyit

add fee decimal(4,2) unsigned default 2050;

describe fyit;

alter table fyit

add fee decimal(4,2) unsigned default 2050 after

Std_name;

Compiled by Ms. Prajakta Joshi

CHANGE
(CHANGING COLUMN NAME)

Alter table fyit

change fee Tution_Fee decimal(4,2) unsigned default

2050;

Compiled by Ms. Prajakta Joshi

DELETING COLUMN

Alter table fyit

drop Tution_Fee decimal(4,2) unsigned default 2050;

Compiled by Ms. Prajakta Joshi

DELETE/ADD PRIMARY KEY

desc fyit;

alter table fyit

Drop primary key;

alter table fyit

add primary key(std_id);

Compiled by Ms. Prajakta Joshi

RENAMING TABLE

alter table fyit rename fybscit;

Or

Rename table fyit to fybscit;

Compiled by Ms. Prajakta Joshi

BUILT IN FUNCTIONS(STRING)

Compiled by Ms. Prajakta Joshi

Compiled by Ms. Prajakta Joshi

Compiled by Ms. Prajakta Joshi

BUILT IN FUNCTIONS(DATE
FUNCTIONS)

Compiled by Ms. Prajakta Joshi

Compiled by Ms. Prajakta Joshi

Compiled by Ms. Prajakta Joshi

NUMERICAL FUNCTION

Compiled by Ms. Prajakta Joshi

Compiled by Ms. Prajakta Joshi

Compiled by Ms. Prajakta Joshi

Compiled by Ms. Prajakta Joshi

Compiled by Ms. Prajakta Joshi

Compiled by Ms. Prajakta Joshi

Compiled by Ms. Prajakta Joshi

RELATIONAL ALGEBRA
• Relational database systems are expected to be equipped with

a query language that can assist its users to query the database
instances. There are two kinds of query languages − relational
algebra and relational calculus.

• Relational algebra is a procedural query language, which takes
instances of relations as input and yields instances of relations as
output.

• It uses operators to perform queries. An operator can be
either unary or binary.

• They accept relations as their input and yield relations as their
output.

• Relational algebra is performed recursively on a relation and
intermediate results are also considered relations.

Compiled by Ms. Prajakta Joshi

THE FUNDAMENTAL OPERATIONS OF
RELATIONAL ALGEBRA ARE AS

FOLLOWS −

• Select

• Project

• Union

• Set different

• Cartesian product

• Rename

Compiled by Ms. Prajakta Joshi

SELECT OPERATION (Σ)

• It selects tuples that satisfy the given predicate from

a relation.

• Notation − σp(r)

• Where σ stands for selection predicate and r stands
for relation. p is prepositional logic formula which

may use connectors like and, or, and not. These

terms may use relational operators like − =, ≠, ≥, <

, >, ≤.

Compiled by Ms. Prajakta Joshi

EXAMPLE

Example :

R

(A B C)

1 2 4

2 2 3

3 2 3

4 3 4

• π (σ (c>3)R) will
show following
tuples.

• A B C

• -------

• 1 2 4

• 4 3 4

Compiled by Ms. Prajakta Joshi

PROJECT OPERATION
(∏)

• Projection is used to project required column data from a

relation.

• It projects column(s) that satisfy a given
predicate.

• Notation − ∏A1, A2, An (r)
• Where A1, A2 , An are attribute names of relation r.
• Duplicate rows are automatically eliminated, as

relation is a set.

Compiled by Ms. Prajakta Joshi

EXAMPLE

R

(A B C)

1 2 4

2 2 3

3 2 3

4 3 4

π (BC)

B C

2 4

2 3

3 4

Compiled by Ms. Prajakta Joshi

UNION OPERATION

• Notation − r U s

• Where r and s are either database relations or relation
result set (temporary relation).

• For a union operation to be valid, the following
conditions must hold −

• r, and s must have the same number of attributes.

• Attribute domains must be compatible.

• Duplicate tuples are automatically eliminated.

Compiled by Ms. Prajakta Joshi

EXAMPLE

∏ author (Books) ∪ ∏ author (Articles)
Output − Projects the names of the authors who have either written a book or an article or both.

Output − Projects the names of the authors
who have either written a book or an article or
both.

Compiled by Ms. Prajakta Joshi

SET DIFFERENCE (−)

• The result of set difference operation is tuples, which

are present in one relation but are not in the

second relation.

• Notation − r − s

• Finds all the tuples that are present in r but not in s.

Compiled by Ms. Prajakta Joshi

EXAMPLE

∏ author (Books) − ∏ author (Articles)

Output − Provides the name of authors who have written books but
not articles.

Compiled by Ms. Prajakta Joshi

CARTESIAN PRODUCT (Χ)

• Combines information of two different relations into

one.

• Notation − r Χ s

• Where r and s are relations and their output will be
defined as −

• r Χ s = { q t | q ∈ r and t ∈ s}

Compiled by Ms. Prajakta Joshi

σauthor = ‘Raheja'(Books Χ Articles)

Output − Yields a relation, which shows all the books and articles
written by Raheja.

Compiled by Ms. Prajakta Joshi

RENAME OPERATION (Ρ)

• The results of relational algebra are also relations
but without any name. The rename operation
allows us to rename the output relation. 'rename'
operation is denoted with small Greek letter rho ρ.

• Notation − ρ x (E)

• Where the result of expression E is saved with name
of x.

Compiled by Ms. Prajakta Joshi

UPDATE AND SET

Compiled by Ms. Prajakta Joshi

Compiled by Ms. Prajakta Joshi

• Update Dept

• Set salary = salary+1000

• Where city =“Mumbai”;

Compiled by Ms. Prajakta Joshi

JOIN

• A relational database consists of multiple related tables
linking together using common columns which are
known as foreign key columns. Because of this, data in
each table is incomplete from the business perspective.

• MySQL supports the following types of joins:

• Cross join

• Inner join

• Left join

• Right join

Compiled by Ms. Prajakta Joshi

CROSS JOIN(CREATE TABLE 1ST)

• CREATE TABLE t1 (

• id INT PRIMARY KEY,

• pattern VARCHAR(50) NOT NULL

•);

•

• CREATE TABLE t2 (

• id VARCHAR(50) PRIMARY KEY,

• pattern VARCHAR(50) NOT NULL

•);

Compiled by Ms. Prajakta Joshi

INSERTING VALUES

• INSERT INTO t1(id, pattern)

• VALUES(1,'Divot'),

• (2,'Brick'),

• (3,'Grid');

•

• INSERT INTO t2(id, pattern)

• VALUES('A','Brick'),

• ('B','Grid'),

• ('C','Diamond');

Compiled by Ms. Prajakta Joshi

USE OF CROSS JOIN

SELECT

t1.id, t2.id

FROM

t1

CROSS JOIN t2;

The CROSS JOIN makes a Cartesian product

of rows from multiple tables. Suppose, you

join t1 and t2 tables using the CROSS JOIN,

the result set will include the combinations

of rows from the t1 table with the rows in the

t2 table.

Compiled by Ms. Prajakta Joshi

INNER JOIN

• To form an INNER JOIN, you need a condition which is known as
a join-predicate.

• An INNER JOIN requires rows in the two joined tables to have
matching column values.

• The INNER JOIN creates the result set by combining column
values of two joined tables based on the join-predicate.

• To join two tables, the INNER JOIN compares each row in the
first table with each row in the second table to find pairs of rows
that satisfy the join-predicate.

• Whenever the join-predicate is satisfied by matching non-NULL
values, column values for each matched pair of rows of the
two tables are included in the result set.

Compiled by Ms. Prajakta Joshi

INNER JOIN

• SELECT

• t1.id, t2.id

• FROM

• t1

• INNER JOIN

• t2 ON t1.pattern = t2.pattern;

Compiled by Ms. Prajakta Joshi

LEFT JOIN

• Similar to an INNER JOIN, a LEFT JOIN also requires a join-
predicate.

• When joining two tables using a LEFT JOIN, the concepts
of left table and right table are introduced.

• Unlike an INNER JOIN, a LEFT JOIN returns all rows in the
left table including rows that satisfy join-predicate and
rows that do not.

• For the rows that do not match the join-predicate, NULLs
appear in the columns of the right table in the result set.

Compiled by Ms. Prajakta Joshi

LEFT JOIN

• SELECT

• t1.id, t2.id

• FROM

• t1

• LEFT JOIN

• t2 ON t1.pattern = t2.pattern

• ORDER BY t1.id;

Compiled by Ms. Prajakta Joshi

RIGHT JOIN

• A RIGHT JOIN is similar to the LEFT JOIN except that
the treatment of tables is reversed.

• With a RIGHT JOIN, every row from the right table (
t2) will appear in the result set.

• For the rows in the right table that do not have the
matching rows in the left table (t1), NULLs appear
for columns in the left table (t1).

Compiled by Ms. Prajakta Joshi

RIGHT JOIN

• SELECT

• t1.id, t2.id

• FROM

• t1

• RIGHT JOIN

• t2 on t1.pattern = t2.pattern

• ORDER BY t2.id;

Compiled by Ms. Prajakta Joshi

RELATIONAL CALCULAS

Compiled by Ms. Prajakta Joshi

TUPLE RELATIONAL CALCULUS

• In this form of relational calculus, we define a tuple variable,
specify the table(relation) name in which the tuple is to be
searched for, along with a condition.

• We can also specify column name using a . dot operator, with
the tuple variable to only get a certain attribute(column) in result.

• A lot of information, right! Give it some time to sink in.

• A tuple variable is nothing but a name, can be anything,
generally we use a single alphabet for this, so let's say T is a tuple
variable.

Compiled by Ms. Prajakta Joshi

DOMAIN RELATIONAL CALCULUS
(DRC)

• In domain relational calculus, filtering is done based
on the domain of the attributes and not based on
the tuple values.

• Syntax: { c1, c2, c3, ..., cn | F(c1, c2, c3, ... ,cn)}

• where, c1, c2... etc represents domain of
attributes(columns) and F defines the formula
including the condition for fetching the data.

Compiled by Ms. Prajakta Joshi

RELATIONAL ALGEBRA
VS

RELATIONAL CALCULUS

BASIS FOR

COMPARISON
RELATIONAL ALGEBRA RELATIONAL CALCULUS

Basic Relational Algebra is a

Procedural language.

Relational Claculus is

Declarative language.

States Relational Algebra states

how to obtain the result.

Relational Calculus states

what result we have to

obtain.

Order Relational Algebra

describes the order in

which operations have to

be performed.

Relational Calculus does

not specify the order of

operations.

Domain Relational Algebra is not

domain dependent.

Relation Claculus can be

domain dependent.

Related It is close to a programming

language.

It is close to the natural

language.
Compiled by Ms. Prajakta Joshi

