Sadhana Education Society
L. S. RAHEJA
COLLEGE OF ARTS & COMMERCE,
SANTACRUZ (W), MUMBAI - 400 054.

DEPARTMENT OF MATHEMATICS,
STATISTICS & COMPUTERS
(FYBCOM)

PREPARED BY
Dr. Mrs. Seema A. Ukidve,
Dr. Mrs. Neelam N. Yadav
Shri Ramsagar B. Yadav

TUTORIAL WORKBOOK
DEPARTMENT OF MATHEMATICS, STATISTICS & COMPUTERS

SEMESTER I and II 2019-20

TUTORIAL WORKBOOK

PREPARED BY:

1- Dr. Mrs. Seema A. Ukidve
2- Dr. Mrs. Neelam N. Yadav
3- Mr. Ramsagar B. Yadav
Why this tutorial handbook is introduced?

“Mathematics is not about numbers, equations, computations or algorithms: it is about understanding.”

_________William Paul Thurston

“The only way to learn Mathematics is to do Mathematics.”

_________Paul Halmos

It has been observed that students enrolling for F.Y.B.COM lack basics of Mathematics and Statistics as some of them opt for Secretarial Practice in F.Y.J.C and S.Y.J.C instead of Mathematics due to which they lose connect with mathematical concepts and rigour.

To boost the confidence of students and to make them understand Mathematics and Statistics lessons taught in the class and to provide them hand on practice of standard questions this tutorial handbook has been introduced.

This tutorial handbook contains:

✓ Latest Syllabus of Mathematical and Statistical techniques paper,
✓ Paper Pattern
✓ Reference Books
✓ Unit wise questions for practice with enough space to solve them
✓ Graph Papers

We hope this handbook will inculcate the problem solving aptitude among students and remove their mathematics phobia.
SYLLABUS FOR MATHEMATICAL AND STATISTICAL TECHNIQUES AT

F.Y.B.Com. EXAMINATION

Revised Course

(WITH EFFECT FROM THE ACADEMIC YEAR 2016-2017)

Why Revision?

There is a Rapid expansion of knowledge in subject matter areas and improved instructional method during last decade. There are considerable curricular revisions happening at the high school level. Application of Mathematics and Statistics are widely used in industry and business. Keeping this in mind, a revision of syllabus required in accordance with the growth of subject of at the high school level and emerging needs of industry and its application.

Objective:

The main objective of this course is to introduce mathematics and statistics to undergraduate students of commerce, so that they can use them in the field of commerce and industry to solve the real life problems.

Distribution of topics and lectures

a. Workload :

Theory: 5 lectures per week of which 2 lectures are for Mathematics and 3 lectures for Statistics.

Tutorial: 1 lecture per week per batch. Batch size is as prescribed by the University.

No. of working weeks in a semester: 15

Total no. of lectures in a semester: 15 * 5 = 75

Introductory lecture of about 120 minutes may be arranged for students who did not offer general mathematics in the 9th & 10th Standard and/or Mathematics at the XIth and XIIth to familiarize the students with the concept of Tabulation, Graphical Representation of the data (basically Histogram and Ogives)
Semester I

<table>
<thead>
<tr>
<th>Course</th>
<th>Topic</th>
<th>No. of lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>UBCOMFSI.6</td>
<td>Unit I</td>
<td>15</td>
</tr>
<tr>
<td>Mathematical</td>
<td>and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit II</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Unit III</td>
<td>15</td>
</tr>
<tr>
<td>Statistical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit IV</td>
<td>15</td>
</tr>
<tr>
<td>Techniques-I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit V</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>75</td>
</tr>
</tbody>
</table>

Total number of lectures 75 + Notional \(75 = 150\) lectures = \(3\) CREDITS

Semester II

<table>
<thead>
<tr>
<th>Course</th>
<th>Topic</th>
<th>No. of lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>UBCOMFSIL.6</td>
<td>Unit I</td>
<td>15</td>
</tr>
<tr>
<td>Mathematical</td>
<td>and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit II</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Unit III</td>
<td>15</td>
</tr>
<tr>
<td>Statistical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit IV</td>
<td>15</td>
</tr>
<tr>
<td>Techniques-II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit V</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>75</td>
</tr>
</tbody>
</table>

Total number of lectures 75 + Notional \(75 = 150\) lectures = \(3\) CREDITS
MATHEMATICAL AND STATISTICAL TECHNIQUES

WORKLOAD: MATHEMATICS : 2 lectures per week
 STATISTICS : 3 lectures per week
 TUTORIAL : 1 per week

Tutorial batch size : 25 Students

Semester I

Course: UBCOMFSI.6

Mathematical and Statistical Techniques-I

[A] MATHEMATICS: (40 marks)

Unit I: Shares and Mutual Funds

a. Shares: Concept of share, face value, market value, dividend, equity shares, preferential shares, bonus shares. Simple examples.
b. Mutual Funds: Simple problems on calculation of Net income after considering entry load, dividend, change in Net Asset Value (N.A.V.) and exit load. Averaging of price under the Systematic Investment Plan (S.I.P.)

Unit II: Permutation, Combination and Linear Programming Problems:

Permutation and Combination: Factorial Notation, Fundamental principle of counting, Permutation as arrangement, Simple examples, combination as selection, Simple examples, Relation between \(^n C_r \) and \(^n P_r \) Examples on commercial application of permutation and combination.

Linear Programming Problem: Sketching of graphs of (i) linear equation \(Ax + By + C = 0 \) (ii) linear inequalities. Mathematical Formulation of Linear Programming Problems upto 3 variables. Solution of Linear Programming Problems using graphical method up to two variables.
[B] STATISTICS: (60 marks)

Unit III: Summarization Measures:

Measures of Dispersion: Concept and idea of dispersion. Various measures Range, Quartile Deviation, Mean Deviation, Standard Deviation, Variance, Combined Variance

Unit IV: Elementary Probability Theory:

a. Probability Theory: Concept of random experiment/trial and possible outcomes; Sample Space and Discrete Sample Space; Events their types, Algebra of Events, Mutually Exclusive and Exhaustive Events, Complimentary events.

 Classical definition of Probability, Addition theorem (without proof), conditional probability.

 Independence of Events: \(P(A \cap B) = P(A) P(B) \). Simple examples.

b. Random Variable: Probability distribution of a discrete random variable; Expectation and Variance of random variable, simple examples on probability distributions.

Unit V: Decision Theory:

Decision making situation, Decision maker, Courses of Action, States of Nature, Pay-off and Pay-off matrix; Decision making under uncertainty, Maximin, Maximax, Minimax regret and Laplace criteria; simple examples to find optimum decision. Formulation of Payoff Matrix. Decision making under Risk, Expected Monetary Value (EMV); Decision Tree; Simple Examples based on EMV. Expected Opportunity Loss (EOL), simple examples based on EOL.
Semester II

Course: UBCOMFSII.6

Mathematical and Statistical Techniques-II

[A] MATHEMATICS : (40 marks)

Unit I: Functions, Derivatives and Their Applications

a. Concept of real functions: constant function, linear function, x^n, e^x, a^x, log x.
Demand, Supply, Total Revenue, Average Revenue, Total cost, Average cost and Profit function. Equilibrium Point, Break-even point.

b. Derivative of functions:

Derivative as rate measure, Derivative of x^n, e^x, a^x, log x

i. Rules of derivatives: Scalar multiplication, sum, difference, product, quotient (Statements only), Simple problems. Second order derivatives.

(Examination Questions on this unit should be application oriented only.)

Unit II: Interest and Annuity:

Interest: Simple Interest, Compound Interest (Nominal & Effective Rate of Interest), Calculations involving upto 4 time periods.

[B] STATISTICS: (60 marks)

Unit III: Bivariate Linear Correlation and Regression

a. **Correlation Analysis**: Meaning, Types of Correlation, Determination of Correlation: Scatter diagram, Karl Pearson’s method of Correlation Coefficient (excluding Bivariate Frequency Distribution Table) and Spearman’s Rank Correlation Coefficient.

b. **Regression Analysis**: Meaning, Concept of Regression equations, Slope of the Regression Line and its interpretation. Regression Coefficients (excluding Bivariate Frequency Distribution Table), Relationship between Coefficient of Correlation and Regression Coefficients, Finding the equations of Regression lines by method of Least Squares.

Unit IV : Time series and Index Numbers

b. **Index Numbers**: Concept and usage of Index numbers, Types of Index numbers, Aggregate and Relative Index Numbers, Laspeyre’s, Paasche’s, Dorbish-Bowley’s, Marshall-Edgeworth and Fisher’s ideal index numbers, Test of Consistency: Time Reversal Test and Factor Reversal Test. Chain Base Index Nos. Shifting of Base year. Cost of Living Index Numbers, Concept of Real Income, Concept of Wholesale Price Index Number. (Examples on missing values should not be taken)

Unit V: Elementary Probability Distributions

Probability Distributions:

i. Discrete Probability Distribution: Binomial, Poisson (Properties and applications only, no derivations are expected)

Continuous Probability distribution: Normal Distribution. (Properties and applications only, no derivations are expected)
Tutorial:

Two tutorials to be conducted on each unit i.e. 10 tutorials per semester. At the end of each semester one Tutorial assignment of 10 marks should be given.

Examination:

Semester End Examination: 100 marks

At the end of each semester, there will be a Semester End Examination of 100 marks, 3 hours duration and question paper pattern as shown below.

Question Paper Pattern : (Course: UBCOMFSI.6 and Course: UBCOMFSII.6)

1. In Section I (based on Mathematics), Two questions carrying 20 marks each. First question should be on Unit I and Second question should be from Unit II.
2. In each question there should be five sub-questions carrying 5 marks each. Students should be asked to answer any 4 sub questions from each question.
3. In Section II (based on Statistics), Three questions carrying 20 marks each. First question should be on Unit III, Second question should be from Unit IV and third question should be from Unit V.
4. In each question there should be five sub-questions carrying 5 marks each. Students should be asked to answer any 4 sub questions from each question.

Reference Books:

6. Mathematical Basis of Life Insurance By S.P. Dixit, C.S. Modi and R.V. Joshi, Insurance Institute of India, Chapters 2: units 2.6, 2.9, 2.20 & 2.21.

7. Securities Laws & Regulation of Financial Market: Intermediate Course Paper 8, Institute of Company Secretaries of India, Chapter 11

10. STATISTICS by Schaum Series.

QUESTION PAPER – SET I

MARKS:- 100 TIME:- 3 HRS

N.B: (1) ALL QUESTION ARE COMPALSORY

(2) ALL QUESTION CARRY EQUAL MARKS

(3) FIGURES TO THE RIGHT INDICATE MARKS TO A SUB-QUESTION.

(4) GRAPH PAPER WILL BE SUPPLIED ON REQUEST.

(5) USE OF NON-PROGRAMMABLE CALCULATOR IS ALLOWED.

SECTION-I

Q.1 ATTEMPT ANY FOUR OF THE FOLLOWING

(a) 5 Marks (b) 5 Marks (c) 5 Marks (d) 5 Marks (e) 5 Marks 20 Marks

Q.2 ATTEMPT ANY FOUR OF THE FOLLOWING

(a) 5 Marks (b) 5 Marks (c) 5 Marks (d) 5 Marks (e) 5 Marks 20 Marks
SECTION-II

Q.3 ATTEMPT ANY FOUR OF THE FOLLOWING

(a) 5 Marks (b) 5 Marks (c) 5 Marks (d) 5 Marks (e) 5 Marks 20 Marks

Q.4 ATTEMPT ANY FOUR OF THE FOLLOWING

(a) 5 Marks (b) 5 Marks (c) 5 Marks (d) 5 Marks (e) 5 Marks

Q.5 ATTEMPT ANY FOUR OF THE FOLLOWING

(a) 5 Marks (b) 5 Marks (c) 5 Marks (d) 5 Marks (e) 5 Marks 20 Marks
SEMESTER-I

Unit I: Shares and Mutual Funds

1- If the market price of a share with face value Rs. 100 is Rs. 130, how many shares of the company can be bought for Rs. 3263, brokerage being 0.4%.
2- Smooth writing industry issued some shares of face value Rs. 10 each. A dividend of Rs. 7500 was declared by the company at 2.5% per share. Find number of shares issued by the company.
3- Neil purchased 1200 units of a mutual fund by investing Rs. 60000. If the entry load was 2% . Find NAV on the date of purchase.
4- Nihir invested Rs. 40000 in a mutual fund on 14-2-2012 when its NAV was Rs. 13.65. A dividend of Rs. 3 per unit was given on 20-4-2012. Afterwards he sold all the units on 20-8-2012 when NAV was Rs. 16.85. Find his gain if there is no entry or exit load.
5- An Investor joined the SIP Scheme for a Mutual Fund under which he would invest Rs. 15000 for 5 months. If the NAVs for each month are Rs. 42.6, Rs. 45, Rs. 47, Rs. 47.5 and Rs. 60. Find the average cost using rupee averaging method, the entry load being 2.5% throughout for these months.
6- Find the Face Value of a share if an investment of Rs. 9,00,000 put in to purchase 8% shares quoted at Rs. 15 each, earned a total dividend of Rs.9600.
7- Mr. Chopra bought 400 shares of par value Rs. 10 each at the market price of Rs. 24 each. If the annual dividend distributed was at the rate of 12%, Find Mr. Chopra’s total dividend and rate of return on investment.
8- Ram invested Rs. 18,000 in a mutual fund scheme with entry load of 2.25% at NAV Rs. 110. How many units did he purchase? The current NAV is Rs. 130. Find the current value of his investment.
9- Katrina invested Rs. 15,000 on 5th of every month for 5 months in a SIP of a mutual fund. The N.A.V on these dates were Rs. 42.26, Rs. 40.25, Rs. 49.57, Rs. 51.45 and Rs. 39.32 respectively. There was the same entry load of 2.3% for all these months. Find the average acquisition cost per unit.
10- Mr. Bhavesh invested Rs. 50,000/- in the purchase of mutual fund units at NAV Rs. 16.50. Calculate the number of units purchased when the entry load of 1.2% was applied. How many more units he could have purchased if the scheme was load free?
1. In how many different ways can the letters of the word ‘LEADING’ be arranged such that the vowels should always come together?
2. A committee of 5 persons to be formed from 6 doctors and 5 nurses. Find the total number of ways if committee consist of i) All doctors ii) 3 doctors and 2 nurses
3. Solve the following L.P.P by graphical method.

Maximize: \[Z = 4x + 5y \]

Subject to: \[2x + 3y \leq 12 \]

\[x + y \leq 5 \]

\[x \geq 0 \text{ and } y \geq 0. \]
4. Solve the following LPP graphically:

Minimize \[Z = 9x + 10y, \]

Subject to: \[x + 2y \geq 30, \]
\[3x + y \geq 30, \]
\[x \geq 0, \quad y \geq 0 \]
5. A printing company prints two types of magazines A and B. The Company earns Rs. 25 and Rs. 35 on each copy of magazines A and B respectively. The magazines are processed by 3 machines. Magazine A requires 2 hours on machine I, 4 hours on machine II and 2 hours on machine III. Magazine B requires 3 hours on machine I, 5 hours on machine II and 3 hours on machine III. Machines I, II and III are available for 35, 50 and 70 hours per week respectively. Formulate the L.P.P so as to maximize the total profit of the company.
6. From 4 professors and 6 students, a committee of 4 is to be formed. In how many ways the committee can be formed such that it contains only one professor.
7. How many numbers of 5 digits can be formed using the digits 1,2,3,4,5,6 such that

i) no digit is repeated

ii) repetition of digits is allowed
8. How many ways out of 11 members of a cricket team choose a Captain, Vice-Captain and Wicket-Keeper from among themselves?
9. Solve the linear programming problem graphically:

Min. \(Z = 10x + 7y \)

Subject to: \(2x + y \geq 2, \)
\(x + 3y \geq 3, \)
\(x \geq 0, y \geq 0. \)
10. A Cracker manufacturer produces two types of crackers, rockets and bombs packed in boxes of hundreds in its two factories. Factory I performs the basic assembly operation. Factory II performs the finishing operation. For financial reason, factory I has only 180 hours available per week and factory II has 120 hours available. Factory I needs 3 hours on each box of rockets and 10 hours on each box of bombs. Factory II needs 6 hours on box of rockets and 4 hours on box of bombs. The profit of the company is Rs. 45 per box of rockets and Rs. 55 per box of bombs. Formulate the LPP to maximize the profit.
Unit III: Summarization Measures:

1. The following are the runs scored by two batsmen A and B in 5 test matches. Decide who should be selected for the coming tour.

Runs by batsman A: 56, 58, 60, 62, 59

Runs by batsman B: 70, 62, 50, 35, 69
2. The ages of 100 persons are tabulated below. Find P_{9} and P_{87}.

<table>
<thead>
<tr>
<th>Age (Years)</th>
<th>10-20</th>
<th>20-30</th>
<th>30-40</th>
<th>40-50</th>
<th>50-60</th>
<th>60-70</th>
<th>70-80</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of persons</td>
<td>16</td>
<td>20</td>
<td>21</td>
<td>28</td>
<td>10</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
3. Find the standard deviation for the following distribution.

<table>
<thead>
<tr>
<th>Size of Shoe</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Persons</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>
4. Calculate M.D from mean and its coefficient for the following data:

<table>
<thead>
<tr>
<th>x</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
5. Find the median for the following data representing the age in years of children.

<table>
<thead>
<tr>
<th>Age in years</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of children</td>
<td>14</td>
<td>20</td>
<td>40</td>
<td>54</td>
<td>40</td>
<td>18</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>
6. Find the first quartile and second quartile for the following data:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of workers</td>
<td>12</td>
<td>28</td>
<td>36</td>
<td>50</td>
<td>25</td>
<td>18</td>
<td>16</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

7. Find the mode for the following data:

<table>
<thead>
<tr>
<th>Income in Rs.</th>
<th>2000-4000</th>
<th>4000-6000</th>
<th>6000-8000</th>
<th>8000-10000</th>
<th>10000-12000</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of persons</td>
<td>16</td>
<td>34</td>
<td>60</td>
<td>37</td>
<td>13</td>
</tr>
</tbody>
</table>
Unit IV: Elementary Probability Theory:

1) There are 3 doctors, 4 Engineers, 2 Statisticians and 1 Economists. A committee of 4 from among them is to be formed. Find the probability that the committee consists of
 a) One of each kind
 b) At least one Doctor
2) If the letters of the word “FATHER” are arranged at random, what is the chance that the two letters A and R will be at the either extremes?
3) A biased coin is tossed thrice. X denotes the number of heads in the three tosses. If the probability distribution of X is as follows:

\[P(X = x) = \frac{5}{16} \quad ; \quad x = 0, 1 \]
\[= \frac{1}{8} \quad ; \quad x = 2 \]
\[= \frac{1}{4} \quad ; \quad x = 3 \]
\[= 0; \text{ otherwise} \]

Find E(X) and V(X).
4) In a game of throwing a fair dice, A wins ₹60 if a 6 is thrown. He gains ₹30 if the dice shows 3 or 4 and he loses ₹30 if odd number occurs on the uppermost face of the dice. Find the expected gain of A.
5) If x is a random variable having probability distribution

$$P(x) = \frac{x}{8} \quad ; \quad x = 0,1$$

$$= \frac{k}{4} \quad ; \quad x = 2$$

$$= \frac{kx}{16} \quad ; \quad x = 3$$

Find the value of k and $E(x)$.
6) From a well shuffled pack of cards, a card is drawn at random, find the probability that the card drawn is
(a) An ace
(b) A heart card
7) A box contains 5 white balls and 3 black balls. If 5 balls are selected from the box, what is the probability that 3 of them are white?
8) If X is a number appearing on the uppermost face of a fair dice, find $E(x)$ and $V(x)$.
Unit V: Decision Theory:

(A) Given the following pay-off table, decide the best decision using the criterion

a) Maximax
b) Maximin
c) Laplace
d) Minimax regret criterion

Pay off Table

<table>
<thead>
<tr>
<th>Course of Action</th>
<th>States of Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S_1</td>
</tr>
<tr>
<td>A_1</td>
<td>2500</td>
</tr>
<tr>
<td>A_2</td>
<td>4000</td>
</tr>
<tr>
<td>A_3</td>
<td>2500</td>
</tr>
</tbody>
</table>
(B) Given the following profit table. Find the optimum decision using EMV Criterion.

Profit Table

<table>
<thead>
<tr>
<th>Course of Action</th>
<th>State of Nature</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S₁</td>
<td>S₂</td>
<td>S₃</td>
<td></td>
</tr>
<tr>
<td>A₁</td>
<td>2500</td>
<td>2500</td>
<td>2500</td>
<td></td>
</tr>
<tr>
<td>A₂</td>
<td>4000</td>
<td>3500</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>A₃</td>
<td>5000</td>
<td>2500</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>Probability of State of Nature</td>
<td>0.4</td>
<td>0.5</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>
(C) You are given the following payoff table for three acts \(A_1, A_2 \) and the states of nature \(S_1, S_2, S_3 \). Draw Decision tree.

<table>
<thead>
<tr>
<th>Course of Action</th>
<th>State of Nature</th>
<th>(S_1)</th>
<th>(S_2)</th>
<th>(S_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>25000</td>
<td>35000</td>
<td>40000</td>
<td></td>
</tr>
<tr>
<td>(A_2)</td>
<td>50000</td>
<td>20000</td>
<td>10000</td>
<td></td>
</tr>
<tr>
<td>Probability of State of Nature</td>
<td>0.3</td>
<td>0.5</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>
(D) For the past 50 days, the sales from bakery have been as follows.

<table>
<thead>
<tr>
<th>Daily Sales</th>
<th>80</th>
<th>100</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Days</td>
<td>15</td>
<td>25</td>
<td>10</td>
</tr>
</tbody>
</table>

The bakery’s production cost is Rs. 8 per loaf and sales price is Rs. 12 per loaf. The unsold breads are destroyed on the same day. Draw a pay-off table and determine the optimal act using EMV criterion.
A newspaper boy has the following probability distribution of selling a fashion magazine.

<table>
<thead>
<tr>
<th>No. of copies Sold</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>0.10</td>
<td>0.15</td>
<td>0.20</td>
<td>0.25</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Each magazine cost him Rs. 30 and is sold at Rs. 50. The newspaper boy cannot return the unsold copies. Determine optimum number of copies the newspaper boy should order using EMV criterion.
1- Find the derivative of \(y \) with respect to \(x \).

(i) \[y = 4x^7 - \log x + \sqrt{x} \]

(ii) \[y = (x + e^x)(\log x - 10) \]
2- The total cost function is given by \(C = x^2 + x + 10 \).

Find the average cost and marginal cost when \(x \) is 20.
3- Examine the points of maxima and minima for the function

\[f(x) = x^3 - 6x^2 + 9x. \]
4- If the demand function is given by $D = 15 - 4p + p^2$.

Find the price elasticity of demand when price is 1.
5- The demand function function of a commodity is given by \(p = 18 + D - D^2 \)

Find the total revenue and marginal revenue function.
6- The demand function is \(D = \frac{p + 3}{(p-1)} \) where \(D \) = Price. Find the elasticity of demand when price is 8.
7- Differentiate w.r.t x.

\[y = (x+3)^2 (x - 2) \]
Unit II: Interest and Annuity:

1- A principal amounts to Rs. 11,880/- after 4 years and to 14,040/- after 7 years. Find the principal and the rate of simple interest.
2- Amit keeps a fixed deposit of Rs. 25,000/- in a bank for 3 years. If the rate of interest is 10% per annum compounded annually, find the total amount he will receive at the time of maturity after 3 years.
3- Bhavin promised to pay Ketan Rs. 3,66,025/- after 4 years. If the rate of interest is 12% per annum, find its present worth.
4- Find the amount at the end of 1 year of an annuity of Rs. 5,000/- payable at each quarter with rate of interest 12% per annum.
5- Rehan takes a loan of Rs. 30,000/- to be repaid in one year at 9% per annum by reducing balance interest rate. Find the equated monthly instalments (EMI).
Given that \((1.0075)^{12} = 1.0938\)
6- A Principal amounts to Rs. 9,680, after 3 years and to 10,800 after 5 years. Find the principal and rate of simple interest.
7- A sum of Rs. 12,000 becomes Rs. 17,280 at 20% compound interest p.a. Find the period.
8- Mr. padwal purchased LCD TV worth Rs. 70,000/- with down payment of Rs. 10,000 and quarterly instalment of equal amount for one year. What is the quarterly instalment if the company wishes to get 12% compound interest?
9- Find the final amount of Rs. 10,000 at 9% p.a in 3 years compounded half yearly.
UNIT:III

BIVARIATE LINEAR CORRELATION AND REGRESSION

(1) From the following data calculate the coefficient of correlation.

No. of pairs of observations = 12, sum of x values = 35, sum of y values = 60, sum of squares of x values = 148, sum of squares of y values = 450, sum of products of x and y = 105.
(2) For the following data of (x) mark in test (y) marks in dancing competition, calculate rank correlation coefficient.

<table>
<thead>
<tr>
<th>X</th>
<th>67</th>
<th>42</th>
<th>53</th>
<th>67</th>
<th>62</th>
<th>60</th>
<th>54</th>
<th>67</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>78</td>
<td>80</td>
<td>78</td>
<td>73</td>
<td>75</td>
<td>68</td>
<td>63</td>
<td>75</td>
</tr>
</tbody>
</table>
(3) Calculate the coefficient of correlation using the following data:

\[n = 20, \sum x = 260, \sum y = 450, \sum x^2 = 4720, \sum y^2 = 12230 \text{ and } \sum x.y = 7050. \]
(4) From the following data, find the regression equation of y on x & the regression equation of x on y further estimate y if $x = 16$ and x if $y = 18$.

<table>
<thead>
<tr>
<th>X</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>10</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>12</td>
<td>11</td>
<td>15</td>
<td>16</td>
<td>19</td>
<td>17</td>
</tr>
</tbody>
</table>
(5) Calculate rank correlation coefficient for the following data respectively, marks in Economics (x) and marks in English (y).
<table>
<thead>
<tr>
<th>X</th>
<th>56</th>
<th>37</th>
<th>65</th>
<th>60</th>
<th>54</th>
<th>51</th>
<th>40</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>50</td>
<td>42</td>
<td>55</td>
<td>48</td>
<td>51</td>
<td>53</td>
<td>38</td>
<td>47</td>
</tr>
</tbody>
</table>
(6) Given for 7 pairs of observations $\sum x = 219$, $\sum y = 16.9$,

$\sum x \cdot y = 564.8$, $\sum x = 7364$. Find the regression equation y on x.
also estimate the value of y when \(x = 64 \).
(7) Given the two regression equations, find (i) mean values of x and y

(ii) coefficient of correlation where the regression equation of y on x is $2x + 3y = 5$ and the regression equation of x on y is $5x + 8y = 13$
(8) Given the two regression equations as $4x - y - 23 = 0$ and $3x - 2y + 4 = 0$.

Find (i) the Mean values of x and y (ii) the coefficient of correlation.
(9) The following data gives income \((x)\) and savings \((y)\) of a group of persons. Estimate the saving of a person with income of Rs. 900.

<table>
<thead>
<tr>
<th>X</th>
<th>650</th>
<th>700</th>
<th>500</th>
<th>600</th>
<th>800</th>
<th>1000</th>
<th>750</th>
</tr>
</thead>
</table>
UNIT: IV TIME SERIES AND INDEX NUMBERS
(1) Calculate 3 yearly moving averages for the following time series. Plot the given data and the moving averages on the graph paper.

<table>
<thead>
<tr>
<th>Year</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time series</td>
<td>37</td>
<td>45</td>
<td>52</td>
<td>42</td>
<td>58</td>
<td>63</td>
<td>50</td>
<td>60</td>
<td>34</td>
</tr>
</tbody>
</table>
(2) In the following series of index number shift base from 2000 to 2003.

<table>
<thead>
<tr>
<th>Year</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>100</td>
<td>105</td>
<td>110</td>
<td>125</td>
<td>135</td>
<td>180</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
</tbody>
</table>

Index	100	105	110	125	135	180

[Image of college logo]
(3) Calculate 4 yearly moving averages for the following time series. Plot
the given data and the moving averages on the graph paper.

<table>
<thead>
<tr>
<th>Year</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time series</td>
<td>33</td>
<td>41</td>
<td>22</td>
<td>42</td>
<td>18</td>
<td>13</td>
<td>49</td>
<td>45</td>
<td>43</td>
</tr>
</tbody>
</table>
(4) Calculate the real income from the following data :-
<table>
<thead>
<tr>
<th>Year</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income(Rs.)</td>
<td>6000</td>
<td>7000</td>
<td>8000</td>
<td>9000</td>
<td>10,000</td>
</tr>
<tr>
<td>Index no.</td>
<td>150</td>
<td>175</td>
<td>160</td>
<td>180</td>
<td>200</td>
</tr>
</tbody>
</table>
(5) Calculate from the following data, the cost of living index number of
different Commodity groups.

<table>
<thead>
<tr>
<th>Group</th>
<th>Food</th>
<th>Clothing</th>
<th>Lighting & Fuel</th>
<th>Rent</th>
<th>Misc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Index</td>
<td>320</td>
<td>300</td>
<td>250</td>
<td>450</td>
<td>260</td>
</tr>
<tr>
<td>Group Weight</td>
<td>50</td>
<td>10</td>
<td>8</td>
<td>20</td>
<td>12</td>
</tr>
</tbody>
</table>
(6) From the following data calculate the cost of living index number for
2006 by the family budget method. Also obtain the expenditure of a

person in the Year 2006 if his expenditure in 2001 was Rs. 6000/-.

<table>
<thead>
<tr>
<th>Group</th>
<th>Price in 2001</th>
<th>Price in 2006</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
<td>15</td>
<td>36</td>
<td>60</td>
</tr>
<tr>
<td>Clothing</td>
<td>48</td>
<td>96</td>
<td>5</td>
</tr>
<tr>
<td>Lighting & Fuel</td>
<td>30</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>Rent</td>
<td>60</td>
<td>180</td>
<td>15</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>45</td>
<td>90</td>
<td>10</td>
</tr>
</tbody>
</table>
(7) If the mean and variance of a Binomial distribution are 4 and 2.4
respectively, Find probability of (i) 5 successes (ii) 8 successes (iii) at most 3 successes (iv) at least 9 successes.
(8) It is found that 1.4% of the items in a box of 100 items are defective.
out of 600 boxes, how many will have (i) no defective items (ii) only 1 defective item?
(Given: \(e^{-1.4} = 0.2466 \))
(9) If X is a normal variate with mean 40 and standard deviation 8, find
(i) \(P(x \geq 42) \)
(ii) \(P(x \leq 39) \)
(iii) \(P(37 \leq x \leq 41) \)
(1) If mean and variance of a binomial distribution are 4 and 2 respectively, find probability that no. of successes is (i) only 3 (ii) at most 2 (iii) at least 7 (iv) 3 or 4.
(2) If X follows normal distribution with mean 150 and variance 1600,
Find (i) $P(x \leq 166)$

(ii) $P(x \geq 126)$

(iii) $P(37 \leq x \leq 41)$
(3) If the mean and variance of a Binomial distribution are 4 and 2.4
respectively, find probability of

(i) 5 successes (ii) 8 successes

(iii) at most 3 successes (iv) at least 9 successes.
A variate X follows Poisson distribution with parameter 3.
Evaluate: (i) $P(X = 1)$ (ii) $P(x < 1)$ (iii) $P(x > 1)$

(GIVEN: $e^3 = 0.0498$)
(5) It is found that 1.4% of the items in a box of 100 items are defective.
out of 600 boxes, how many will have (i) no defective items (ii) only 1 defective item?
(Given: \(e^{-1.4} = 0.2466 \))
(6) If a fair coin is tossed 6 times, find the probability that number of
heads is (i) none (ii) only 2 (iii) all (iv) at least 4.
(7) Akash receives, on an average, 5 messages per day. Find the
probability that on a specific day, he will receive (i) only 2 (ii) only 3
(iii) at least 4 (iv) less than 3 messages. (Given : $e^{-5} = 0.0067$)
(8) A firm has 300 accounts which are normally distributed with a mean of
Rs. 10,000 and Standard deviation of Rs 1000. Find

(i) the number of accounts with amounts lying between Rs.8000 and Rs.11,000.

(ii) the number of accounts with an amount of Rs.7500 or less.
(9) If \(X \) is a normal variate with mean 40 and standard deviation 8, find

(i) \(P(x \geq 42) \),
(ii) \(P(x \leq 39) \)
(iii) \(P(37 \leq x \leq 41) \)