
Compiled by Ms. Prajakta Joshi

UNIT 2

IMPERATIVE
PROGRAMMING

IF CONDITIONAL STATEMENT

Compiled by Ms. Prajakta Joshi

IF….ELSE STATEMENT

Compiled by Ms. Prajakta Joshi

ARITHMETIC OPERATORS

Op

era

tor

Description Example

+ Adds two operands. A + B = 30

− Subtracts second operand

from the first.

A − B = -10

* Multiplies both operands. A * B = 200

/ Divides numerator by de-

numerator.

B / A = 2

% Modulus Operator and

remainder of after an

integer division.

B % A = 0

++ Increment operator

increases the integer value

by one.

A++ = 11

-- Decrement operator

decreases the integer value

by one.

A-- = 9

Compiled by Ms. Prajakta Joshi

#include <stdio.h>

main()

{

int a = 21; int b = 10; int c ;

c = a + b;

printf("Line 1 - Value of c is %d\n", c);

c = a - b;

printf("Line 2 - Value of c is %d\n", c);

c = a * b;

printf("Line 3 - Value of c is %d\n", c);

c = a / b;

printf("Line 4 - Value of c is %d\n", c);

c = a % b;

printf("Line 5 - Value of c is %d\n", c);

}

Compiled by Ms. Prajakta Joshi

UNARY OPERATORS IN C

• Unary operator: are operators that act upon a
single operand to produce a new value.

• Types of unary operators:

• unary minus(-)

• increment(++)

• decrement(- -)

• NOT(!)

• Addressof operstor(&)

• sizeof()

Compiled by Ms. Prajakta Joshi

• #include <stdio.h>

• int main()

• {

• int a = 10, b = 100;

• float c = 10.5, d = 100.5;

• printf("++a = %d \n", ++a);

• printf("--b = %d \n", --b);

• printf("++c = %f \n", ++c);

• printf("--d = %f \n", --d);

• return 0;

• }

Compiled by Ms. Prajakta Joshi

SIZEOF OPERATOR

#include <stdio.h>

int main()

{

int a;

float b;

double c;

char d;

printf("Size of int=%lu bytes\n",sizeof(a));

printf("Size of float=%lu bytes\n",sizeof(b));

printf("Size of double=%lu bytes\n",sizeof(c));

printf("Size of char=%lu byte\n",sizeof(d));

return 0;

}

Compiled by Ms. Prajakta Joshi

RELATIONAL OPERATORS

Operator Description Example

== Checks if the values of two operands are equal or

not. If yes, then the condition becomes true.

(A == B) is not true.

!= Checks if the values of two operands are equal or

not. If the values are not equal, then the condition

becomes true.

(A != B) is true.

> Checks if the value of left operand is greater than

the value of right operand. If yes, then the

condition becomes true.

(A > B) is not true.

< Checks if the value of left operand is less than the

value of right operand. If yes, then the condition

becomes true.

(A < B) is true.

>= Checks if the value of left operand is greater than

or equal to the value of right operand. If yes, then

the condition becomes true.

(A >= B) is not true.

<= Checks if the value of left operand is less than or

equal to the value of right operand. If yes, then the

condition becomes true.

(A <= B) is true.

Compiled by Ms. Prajakta Joshi

• #include <stdio.h>

• main()

• {

• int a = 21; int b = 10; int c ;

• if(a == b)

• {

• printf("Line 1 - a is equal to b\n");

• }

• else

• {

• printf("Line 1 - a is not equal to b\n");

• }

• }

Compiled by Ms. Prajakta Joshi

LOGICAL OPERATORS

Op

era

tor

Description Example

&& Called Logical AND

operator. If both the

operands are non-zero,

then the condition

becomes true.

(A && B) is false.

|| Called Logical OR

Operator. If any of the two

operands is non-zero, then

the condition becomes

true.

(A || B) is true.

! Called Logical NOT

Operator. It is used to

reverse the logical state of

its operand. If a condition is

true, then Logical NOT

!(A && B) is true.

Compiled by Ms. Prajakta Joshi

• #include <stdio.h>

• main() {

• int a = 5; int b = 20; int c ;

• if (a && b)

• {

• printf("Line 1 - Condition is true\n");

• }

• if (a || b)

• {

• printf("Line 2 - Condition is true\n"); }

Compiled by Ms. Prajakta Joshi

• /* lets change the value of a and b */

• a = 0; b = 10;

• if (a && b)

• {

• printf("Line 3 - Condition is true\n");

• }

• else

• {

• printf("Line 3 - Condition is not true\n");

• }

• if (!(a && b))

• {

• printf("Line 4 - Condition is true\n");

• }

• }

Compiled by Ms. Prajakta Joshi

ASSIGNMENT OPERATORS

Operat

or

Description Example

= Simple assignment operator. Assigns values from right

side operands to left side operand
C = A + B will assign the value of A

+ B to C

+= Add AND assignment operator. It adds the right

operand to the left operand and assign the result to

the left operand.
C += A is equivalent to C = C + A

-= Subtract AND assignment operator. It subtracts the

right operand from the left operand and assigns the

result to the left operand.
C -= A is equivalent to C = C - A

*= Multiply AND assignment operator. It multiplies the right

operand with the left operand and assigns the result to

the left operand.
C *= A is equivalent to C = C * A

/= Divide AND assignment operator. It divides the left

operand with the right operand and assigns the result

to the left operand.
C /= A is equivalent to C = C / A

%= Modulus AND assignment operator. It takes modulus

using two operands and assigns the result to the left

operand.
C %= A is equivalent to C = C % A

<<= Left shift AND assignment operator. C <<= 2 is same as C = C << 2

>>= Right shift AND assignment operator. C >>= 2 is same as C = C >> 2

&= Bitwise AND assignment operator. C &= 2 is same as C = C & 2

^= Bitwise exclusive OR and assignment operator. C ^= 2 is same as C = C ^ 2

|= Bitwise inclusive OR and assignment operator. C |= 2 is same as C = C | 2

Compiled by Ms. Prajakta Joshi

• #include <stdio.h>

• main()

• {

• int a = 21; int c ;

• c = a;

• printf("Line 1 - = Operator Example, Value of c =

%d\n", c);

• c += a;

• printf("Line 2 - += Operator Example, Value of c =

%d\n", c);

• c -= a;

• printf("Line 3 - -= Operator Example, Value of c =

%d\n", c);

• c *= a;

• printf("Line 4 - *= Operator Example, Value of c =

%d\n", c);

Compiled by Ms. Prajakta Joshi

• c = 200; c %= a;

• printf("Line 6 - %= Operator Example, Value of c = %d\n", c);

• c <<= 2;

• printf("Line 7 - <<= Operator Example, Value of c = %d\n", c);

• c >>= 2;

• printf("Line 8 - >>= Operator Example, Value of c = %d\n", c);

• c &= 2;

• printf("Line 9 - &= Operator Example, Value of c = %d\n", c);

• c ^= 2;

• printf("Line 10 - ^= Operator Example, Value of c = %d\n", c);

• c |= 2;

• printf("Line 11 - |= Operator Example, Value of c = %d\n", c);

• }

Compiled by Ms. Prajakta Joshi

CONDITIONAL OR TERNARY
OPERATORS IN C

• Conditional operators return one value if condition

is true and returns another value is condition is false.

• This operator is also called as ternary operator.

• Syntax : (Condition? true_value: false_value);

• Example : (A > 100 ? 0 : 1);

Compiled by Ms. Prajakta Joshi

• #include <stdio.h>

•

• int main()

• {

• int x=1, y ;

• y = (x ==1 ? 2 : 0) ;

• printf("x value is %d\n", x);

• printf("y value is %d", y);

• }

Compiled by Ms. Prajakta Joshi

• #include<stdio.h>

• int main()

• {

• int age;

• printf(" Please Enter your age here: \n ");

• scanf(" %d ", &age);

• (age >= 18) ? printf(" You are eligible to Vote ") :

• printf(" You are not eligible to Vote ");

• return 0;

• }

Compiled by Ms. Prajakta Joshi

TYPE CONVERSION/TYPE CASTING

• Implicit Type Conversion/ Casting

• Explicit Type Conversion/ Casting

Compiled by Ms. Prajakta Joshi

IMPLICIT TYPE CONVERSION/ CASTING

• Implicit type casting means conversion of data types

without losing its original meaning.

• This type of typecasting is essential when you want to

change data types without changing the significance

of the values stored inside the variable.

• Implicit type conversion happens automatically when

a value is copied to its compatible data type.

• During conversion, strict rules for type conversion are

applied.

• If the operands are of two different data types, then

an operand having lower data type is automatically

converted into a higher data type.
Compiled by Ms. Prajakta Joshi

EXAMPLE OF ITC

#include<stdio.h>

int main()

{

short a=10; //initializing variable of short data type

int b; //declaring int variable

b=a; //implicit type casting

printf("%d\n",a);

printf("%d\n",b);

}

Compiled by Ms. Prajakta Joshi

EXAMPLE OF ITC FROM CHAR TO INT

#include<stdio.h>

int main()

{

int x = 10; // integer x

char y = 'a'; // character c

// y implicitly converted to int. ASCII

// value of 'a' is 97

x = x + y;

// x is implicitly converted to float

float z = x + 1.0;

printf("x = %d, z = %f", x, z);

return 0;

}
Compiled by Ms. Prajakta Joshi

EXPLICIT TYPE CONVERSION

• When interpretation is between a variable having a

data type with respect to size & type both, this

conversion is not possible for compiler

automatically.

• It is performed by the programmer.

• In this type casting programmer tells compiler to

type cast one data type to another data type using

type casting operator.

• but there is some risk of information loss is there, so

one needs to be careful while doing it.

Compiled by Ms. Prajakta Joshi

C PROGRAM TO DEMONSTRATE
EXPLICIT TYPE CASTING

• #include<stdio.h>

•

• int main()

• {

• double x = 1.2;

•

• // Explicit conversion from double to int

• int sum = (int)x + 1;

•

• printf("sum = %d", sum);

•

• return 0;

• }

Compiled by Ms. Prajakta Joshi

C PROGRAM TO DEMONSTRATE
EXPLICIT TYPE CASTING

• #include<stdio.h>

• int main()

• {

• float a = 1.2;

• //int b = a; //Compiler will throw an error for this

• int b = (int)a + 1;

• printf("Value of a is %f\n", a);

• printf("Value of b is %d\n",b);

• return 0;

• }

Compiled by Ms. Prajakta Joshi

INPUT & OUTPUT FUNCTIONS

Compiled by Ms. Prajakta Joshi

GETCH() FUNCTION

• The getch() function reads the alphanumeric

character input from the user. But, that the entered

character will not be displayed.

#include <stdio.h>

#include <conio.h>

int main() {

printf("\nHello, press any alphanumeric character to exit

");

getch();

return 0; }

Compiled by Ms. Prajakta Joshi

GETCHE() FUNCTION

• getche() function reads the alphanumeric

character from the user input. Here, character you

entered will be echoed to the user until he/she

presses any key.

#include <stdio.h> //header file section

#include <conio.h>

int main() {

printf("\nHello, press any alphanumeric character or

symbol to exit \n ");

getche();

return 0; }

Compiled by Ms. Prajakta Joshi

GETCHAR() FUNCTION

• The getchar() function reads character type data

form the input.

• The getchar() function reads one character at a

time till the user presses the enter key.

Compiled by Ms. Prajakta Joshi

#include <stdio.h> //header file section #include

<conio.h>

int main()

{

char c;

printf("Enter a character : ");

c = getchar();

printf("\nEntered character : %c ", c);

return 0;

}

Compiled by Ms. Prajakta Joshi

GETS() FUNCTION

• The gets() function can read a full string even blank

spaces presents in a string.

• But, the scanf() function leave a string after blank

space space is detected.

• The gets() function is used to get any string from the

user.

Compiled by Ms. Prajakta Joshi

GETS() FUNCTION

#include <stdio.h>

#include <conio.h>

int main()

{

char c[25];

printf("Enter a string : ");

gets(c);

printf("\n%s is awesome ",c);

return 0;

}

Compiled by Ms. Prajakta Joshi

PUTCH() FUNCTION

• The putch() function prints any alphanumeric

character.

#include <stdio.h> //header file section

#include <conio.h>

int main() {

char c;

printf("Press any key to continue\n ");

c = getch();

printf("input : ");

putch(c);

return 0; }

Compiled by Ms. Prajakta Joshi

PUTCHAR() FUNCTION

• putchar() function prints only one character at a

time.

#include <stdio.h> //header file section #include

<conio.h>

int main() {

char c = 'K';

putchar(c);

return 0;

}

Compiled by Ms. Prajakta Joshi

PUTS() FUNCTION

• The puts() function prints the charater array or string

on the console. The puts() function is similar to

printf() function, but we cannot print other than

characters using puts() function.

Compiled by Ms. Prajakta Joshi

PUTS() FUNCTION

#include <stdio.h>

#include <conio.h>

int main()

{

char c[25];

printf("Enter your Name : ");

gets(c);

puts(c);

return 0;

}

Compiled by Ms. Prajakta Joshi

