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UNIT 2

IMPERATIVE 
PROGRAMMING



IF CONDITIONAL STATEMENT
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IF….ELSE STATEMENT
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ARITHMETIC OPERATORS

Op

era

tor

Description Example

+ Adds two operands. A + B = 30

− Subtracts second operand 

from the first.

A − B = -10

* Multiplies both operands. A * B = 200

/ Divides numerator by de-

numerator.

B / A = 2

% Modulus Operator and 

remainder of after an 

integer division.

B % A = 0

++ Increment operator 

increases the integer value 

by one.

A++ = 11

-- Decrement operator 

decreases the integer value 

by one.

A-- = 9
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#include <stdio.h>

main() 

{

int a = 21; int b = 10; int c ; 

c = a + b; 

printf("Line 1 - Value of c is %d\n", c ); 

c = a - b; 

printf("Line 2 - Value of c is %d\n", c );

c = a * b; 

printf("Line 3 - Value of c is %d\n", c ); 

c = a / b;

printf("Line 4 - Value of c is %d\n", c ); 

c = a % b;

printf("Line 5 - Value of c is %d\n", c );

}
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UNARY OPERATORS IN C

• Unary operator: are operators that act upon a 
single operand to produce a new value.

• Types of unary operators:

• unary minus(-)

• increment(++)

• decrement(- -)

• NOT(!)

• Addressof operstor(&)

• sizeof()
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• #include <stdio.h>

• int main()

• {

• int a = 10, b = 100;

• float c = 10.5, d = 100.5;

• printf("++a = %d \n", ++a);

• printf("--b = %d \n", --b);

• printf("++c = %f \n", ++c);

• printf("--d = %f \n", --d);

• return 0;

• }
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SIZEOF OPERATOR

#include <stdio.h>

int main()

{

int a;

float b;

double c;

char d;

printf("Size of int=%lu bytes\n",sizeof(a));

printf("Size of float=%lu bytes\n",sizeof(b));

printf("Size of double=%lu bytes\n",sizeof(c));

printf("Size of char=%lu byte\n",sizeof(d));

return 0;

}
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RELATIONAL OPERATORS

Operator Description Example

== Checks if the values of two operands are equal or 

not. If yes, then the condition becomes true.

(A == B) is not true.

!= Checks if the values of two operands are equal or 

not. If the values are not equal, then the condition 

becomes true.

(A != B) is true.

> Checks if the value of left operand is greater than 

the value of right operand. If yes, then the 

condition becomes true.

(A > B) is not true.

< Checks if the value of left operand is less than the 

value of right operand. If yes, then the condition 

becomes true.

(A < B) is true.

>= Checks if the value of left operand is greater than 

or equal to the value of right operand. If yes, then 

the condition becomes true.

(A >= B) is not true.

<= Checks if the value of left operand is less than or 

equal to the value of right operand. If yes, then the 

condition becomes true.

(A <= B) is true.
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• #include <stdio.h> 

• main() 

• {

• int a = 21; int b = 10; int c ;

• if( a == b )

• {

• printf("Line 1 - a is equal to b\n" ); 

• }

• else

• {

• printf("Line 1 - a is not equal to b\n" ); 

• }

• }
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LOGICAL OPERATORS

Op

era

tor

Description Example

&& Called Logical AND 

operator. If both the 

operands are non-zero, 

then the condition 

becomes true.

(A && B) is false.

|| Called Logical OR 

Operator. If any of the two 

operands is non-zero, then 

the condition becomes 

true.

(A || B) is true.

! Called Logical NOT 

Operator. It is used to 

reverse the logical state of 

its operand. If a condition is 

true, then Logical NOT 

!(A && B) is true.
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• #include <stdio.h> 

• main() {

• int a = 5; int b = 20; int c ;

• if ( a && b ) 

• {

• printf("Line 1 - Condition is true\n" ); 

• } 

• if ( a || b )

• { 

• printf("Line 2 - Condition is true\n" ); } 
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• /* lets change the value of a and b */

• a = 0; b = 10; 

• if ( a && b )

• {

• printf("Line 3 - Condition is true\n" ); 

• } 

• else 

• { 

• printf("Line 3 - Condition is not true\n" ); 

• } 

• if ( !(a && b) )

• { 

• printf("Line 4 - Condition is true\n" ); 

• } 

• }
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ASSIGNMENT OPERATORS

Operat

or

Description Example

= Simple assignment operator. Assigns values from right 

side operands to left side operand
C = A + B will assign the value of A 

+ B to C

+= Add AND assignment operator. It adds the right 

operand to the left operand and assign the result to 

the left operand.
C += A is equivalent to C = C + A

-= Subtract AND assignment operator. It subtracts the 

right operand from the left operand and assigns the 

result to the left operand.
C -= A is equivalent to C = C - A

*= Multiply AND assignment operator. It multiplies the right 

operand with the left operand and assigns the result to 

the left operand.
C *= A is equivalent to C = C * A

/= Divide AND assignment operator. It divides the left 

operand with the right operand and assigns the result 

to the left operand.
C /= A is equivalent to C = C / A

%= Modulus AND assignment operator. It takes modulus 

using two operands and assigns the result to the left 

operand.
C %= A is equivalent to C = C % A

<<= Left shift AND assignment operator. C <<= 2 is same as C = C << 2

>>= Right shift AND assignment operator. C >>= 2 is same as C = C >> 2

&= Bitwise AND assignment operator. C &= 2 is same as C = C & 2

^= Bitwise exclusive OR and assignment operator. C ^= 2 is same as C = C ^ 2

|= Bitwise inclusive OR and assignment operator. C |= 2 is same as C = C | 2
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• #include <stdio.h> 

• main()

• {

• int a = 21; int c ; 

• c = a; 

• printf("Line 1 - = Operator Example, Value of c = 

%d\n", c ); 

• c += a;

• printf("Line 2 - += Operator Example, Value of c = 

%d\n", c );

• c -= a;

• printf("Line 3 - -= Operator Example, Value of c = 

%d\n", c ); 

• c *= a; 

• printf("Line 4 - *= Operator Example, Value of c = 

%d\n", c ); 
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• c = 200; c %= a;

• printf("Line 6 - %= Operator Example, Value of c = %d\n", c );

• c <<= 2;

• printf("Line 7 - <<= Operator Example, Value of c = %d\n", c ); 

• c >>= 2; 

• printf("Line 8 - >>= Operator Example, Value of c = %d\n", c ); 

• c &= 2;

• printf("Line 9 - &= Operator Example, Value of c = %d\n", c );

• c ^= 2; 

• printf("Line 10 - ^= Operator Example, Value of c = %d\n", c );

• c |= 2;

• printf("Line 11 - |= Operator Example, Value of c = %d\n", c ); 

• }
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CONDITIONAL OR TERNARY 
OPERATORS IN C

• Conditional operators return one value if condition 

is true and returns another value is condition is false.

• This operator is also called as ternary operator.

• Syntax : (Condition? true_value: false_value);

• Example : (A > 100 ? 0 : 1);
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• #include <stdio.h>

•

• int main()

• {

• int x=1, y ;

• y = ( x ==1 ? 2 : 0 ) ;

• printf("x value is %d\n", x);

• printf("y value is %d", y);

• }
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• #include<stdio.h> 

• int main()

• {

• int age;

• printf(" Please Enter your age here: \n ");

• scanf(" %d ", &age);

• (age >= 18) ? printf(" You are eligible to Vote ") :

• printf(" You are not eligible to Vote ");

• return 0;

• }
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TYPE CONVERSION/TYPE CASTING

• Implicit Type Conversion/ Casting

• Explicit Type Conversion/ Casting
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IMPLICIT TYPE CONVERSION/ CASTING

• Implicit type casting means conversion of data types 

without losing its original meaning. 

• This type of typecasting is essential when you want to 

change data types without changing the significance 

of the values stored inside the variable.

• Implicit type conversion happens automatically when 

a value is copied to its compatible data type.

• During conversion, strict rules for type conversion are 

applied.

• If the operands are of two different data types, then 

an operand having lower data type is automatically 

converted into a higher data type.
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EXAMPLE OF ITC

#include<stdio.h>

int main()

{

short a=10; //initializing variable of short data type

int b; //declaring int variable

b=a; //implicit type casting

printf("%d\n",a);

printf("%d\n",b);

} 
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EXAMPLE OF ITC FROM CHAR TO INT

#include<stdio.h> 

int main() 

{ 

int x = 10;    // integer x 

char y = 'a';  // character c 

// y implicitly converted to int. ASCII  

// value of 'a' is 97 

x = x + y; 

// x is implicitly converted to float 

float z = x + 1.0; 

printf("x = %d, z = %f", x, z); 

return 0; 

} 
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EXPLICIT TYPE CONVERSION

• When interpretation is between a variable having a 

data type with respect to size & type both, this 

conversion is not possible for compiler 

automatically.

• It is performed by the programmer.

• In this type casting programmer tells compiler to 

type cast one data type to another data type using 

type casting operator.

• but there is some risk of information loss is there, so 

one needs to be careful while doing it.
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C PROGRAM TO DEMONSTRATE 
EXPLICIT TYPE CASTING 

• #include<stdio.h> 

•

• int main() 

• { 

• double x = 1.2; 

•

• // Explicit conversion from double to int

• int sum = (int)x + 1; 

•

• printf("sum = %d", sum); 

•

• return 0; 

• } 
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C PROGRAM TO DEMONSTRATE 
EXPLICIT TYPE CASTING 

• #include<stdio.h>

• int main()

• {

• float a = 1.2;

• //int b  = a; //Compiler will throw an error for this

• int b = (int)a + 1;

• printf("Value of a is %f\n", a);

• printf("Value of b is %d\n",b);

• return 0;

• }
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INPUT & OUTPUT FUNCTIONS

Compiled by Ms. Prajakta Joshi



GETCH() FUNCTION

• The getch() function reads the alphanumeric 

character input from the user. But, that the entered 

character will not be displayed.

#include <stdio.h> 

#include <conio.h> 

int main() {

printf("\nHello, press any alphanumeric character to exit 

"); 

getch();

return 0; }
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GETCHE() FUNCTION

• getche() function reads the alphanumeric 

character from the user input. Here, character you 

entered will be echoed to the user until he/she 

presses any key.

#include <stdio.h> //header file section

#include <conio.h> 

int main() {

printf("\nHello, press any alphanumeric character or 

symbol to exit \n ");

getche(); 

return 0; }
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GETCHAR() FUNCTION

• The getchar() function reads character type data 

form the input. 

• The getchar() function reads one character at a 

time till the user presses the enter key.
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#include <stdio.h> //header file section #include 

<conio.h>

int main() 

{ 

char c;

printf("Enter a character : "); 

c = getchar(); 

printf("\nEntered character : %c ", c); 

return 0;

}
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GETS() FUNCTION

• The gets() function can read a full string even blank 

spaces presents in a string.

• But, the scanf() function leave a string after blank 

space space is detected.

• The gets() function is used to get any string from the 

user.
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GETS() FUNCTION

#include <stdio.h> 

#include <conio.h> 

int main()

{ 

char c[25];

printf("Enter a string : "); 

gets(c); 

printf("\n%s is awesome ",c); 

return 0; 

}
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PUTCH() FUNCTION

• The putch() function prints any alphanumeric 

character.

#include <stdio.h> //header file section

#include <conio.h> 

int main() { 

char c; 

printf("Press any key to continue\n ");

c = getch(); 

printf("input : "); 

putch(c);

return 0; }
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PUTCHAR() FUNCTION

• putchar() function prints only one character at a 

time.

#include <stdio.h> //header file section #include 

<conio.h> 

int main() {

char c = 'K'; 

putchar(c); 

return 0;

}
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PUTS() FUNCTION

• The puts() function prints the charater array or string 

on the console. The puts() function is similar to 

printf() function, but we cannot print other than 

characters using puts() function.
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PUTS() FUNCTION

#include <stdio.h> 

#include <conio.h>

int main() 

{ 

char c[25];

printf("Enter your Name : "); 

gets(c); 

puts(c); 

return 0; 

}
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