SES'S L.S.RAHEJA COLLEGE OF ARTS AND COMMERCE

Course: Elementary Quantitative Techniques Unit: I Prepared by: Rahul Dandekar

- 1) If demand function is D = 180p 10 and supply function is S = 170p + 10, then find equilibrium price and quantity.
- 2) If demand function is D = 165p 10 and supply function is S = 140p + 15, then find equilibrium price and quantity.
- 3) Draw the graphs of following equations.

a) $y = x - 3$	$0 \le x \le 3$
b) $y = 2x + 2$	$-1 \leq x \leq 2$
c) $y = 5x - 1$	$-2 \le x \le 1$
d) $Y = x^2 + 1$	$0 \le x \le 3$

Given: C = 150 + 0.8 Y (Consumption Expenditure)
 I = 100 + 0.1 Y (Investment Expenditure)

G = 50 (Government Expenditure)

Find equilibrium values of Y (National Income), C, I and G

5) Given: C = 200 + 0.8 Y (Consumption Expenditure)

I = 40 + 0.1 Y (Investment Expenditure)

G = 60 (Government Expenditure)

Find equilibrium values of Y (National Income), C, I and G

6) Evaluate following Limits

a)
$$\lim_{x \to 8} \left[\frac{x^2 - 64}{x - 8} \right]$$

b)
$$\lim_{x \to 4} \left[\frac{x^2 - 16}{x - 4} \right]$$

c)
$$\lim_{X \to 3} \frac{X^2 + 2X - 15}{x^2 - 9}$$

- 7) Differentiate with respect to X
- a) $Y = \frac{x^2 + 7x 20}{3x^2 x + 15}$
- b) $Y = (3x^3 15x^2 + 20) (7x^2 3)$
- c) $Y = (2x^3 3x^2) (3x^2)$
- d) Y = 200
- e) Y = 1000
- f) $Y = (5x^3 x^2) (10x)$

g)
$$Y = \frac{2x^2 + x - 50}{5x^2 - x}$$

SES'S L.S.RAHEJA COLLEGE OF ARTS AND COMMERCE

Course: Elementary Quantitative Techniques Unit: II Prepared by: Rahul Dandekar

- 1) Find second order derivatives for following
 - a) $Y = 7x^4 5x^3 + 4x^2 + 3x + 90$
 - b) $Y = 2x^3 + 3x^2 + 18x + 180$
 - c) $Y = (5x^2 + 30)(x^2 + 15)$
 - d) $Y = (x^2 + 2x) (50x)$
- 2) If Total Revenue is $TR = 126x 3x^2$ and Total Cost Function is TC = 925 30x then calculate profit maximising output and profit.
- 3) If Total Revenue is $TR = 100x 5x^2$ and Total Cost Function is TC = 550 50x then calculate profit maximising output and profit.
- 4) Solve the following L.P.P. graphically.

Maximize Z = 9X + 13YSubject to $2X + 3Y \le 18$ $2X + Y \le 10$ $X \ge 0, Y \ge 0$

5) Solve the following L.P.P. graphically.

Minimize Z = 3X + 2YSubject to $X + 2 Y \ge 6$ $2X + Y \ge 6$ $X \ge 0, Y \ge 0$

6) If Total Cost = $15x^5 + 3x^4 + 500$, then find Average Cost, Marginal Cost and second order derivative of Total Cost.

- 7) If Total Revenue = $12x^5 + 5x^4 + 100$, then find Average Revenue, Marginal Revenue and second order derivative of Total Revenue.
- 8) A firm manufactures 2 products A and B. The profits per unit of products are Rs 30 and Rs. 20 respectively. Firm has 2 machines M1 and M2. From the given information formulate the L.P.P. to maximise profit.

	Product A	Product B	Time available in Minutes
M1	4	3	2000
M2	2	1	2500

9) Two different kinds of food A and B are being considered to form a weekly diet. The price of food A is Rs. 4 per Kg and that of food B is Rs. 3 per Kg. From the given information formulate the L.P.P. to minimise the cost.

	Food A	Food B	Weekly Requirement
Fats	5	7	16
Carbohydrates	15	10	25
Proteins	8	9	15

SES'S L.S.RAHEJA COLLEGE OF ARTS AND COMMERCE

Course: Elementary Quantitative Techniques Unit: III Prepared by: Rahul Dandekar

- 1) Explain following concepts with the help of an example.
 - a) Row matrix
 - b) Column matrix
 - c) Lowe triangular matrix
 - d) Upper triangular matrix
 - e) Square matrix
 - f) Rectangular Matrix
 - g) Zero matrix
 - h) Diagonal matrix
 - i) Scalar matrix
 - j) Identity matrix
 - k) Symmetric matrix
- 2) Find T_{30} of arithmetic progression 4, 12, 20,
- 3) Find T_{20} of arithmetic progression 4, 9, 14,
- For the following geometric progression 2, 12, 72, find the fifth term (t₅) and the eighth term (t₉)
- 5) For the following geometric progression 3, 12, 48, find the fifth term (t₁₀) and the eighth term (t₆)
- 6) Given, $A = \begin{bmatrix} 5 & 1 \\ 7 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 2 \\ -1 & -3 \end{bmatrix}$

Prove that $(A + B)^T = A^T + B^T$

7) IF A =
$$\begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}$$
, K₁ = 2, K₂ = 4 then Prove (K₁ + K₂) A = K₁ A + K₂ A

8) IF A = $\begin{bmatrix} -3 & 1 \\ 7 & 4 \end{bmatrix}$, B = $\begin{bmatrix} 7 & 5 \\ 5 & 3 \end{bmatrix}$ and C = $\begin{bmatrix} 3 & 8 \\ 4 & 2 \end{bmatrix}$

then prove that 1) (A + B) + C = A + (B + C)

9) IF
$$A = \begin{bmatrix} 2 & 0 \\ 3 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 0 \\ 1 & 3 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & -1 \\ 4 & 3 \end{bmatrix}$ Then calculate
a) AB
b) BC
c) AC
d) BA
e) CB
f) CA
g) A+B
h) A+C
i) B+C